检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]NationalLaboratoryforNovelSoftwareTechnology,NanjingUniversity,Nanjing210093,P.R.China
出 处:《Journal of Computer Science & Technology》2005年第1期48-54,共7页计算机科学技术学报(英文版)
基 金:国家杰出青年科学基金,the Fok Ying Tung Education Foundation,教育部优秀青年教师资助计划
摘 要:It is well-known that in order to build a strong ensemble, the component learners should be with high diversity as well as high accuracy. If perturbing the training set can cause significant changes in the component learners constructed, then Bagging can effectively improve accuracy. However, for stable learners such as nearest neighbor classifiers, perturbing the training set can hardly produce diverse component learners, therefore Bagging does not work well. This paper adapts Bagging to nearest neighbor classifiers through injecting randomness to distance metrics. In constructing the component learners, both the training set and the distance metric employed for identifying the neighbors are perturbed. A large scale empirical study reported in this paper shows that the proposed BagInRand algorithm can effectively improve the accuracy of nearest neighbor classifiers.It is well-known that in order to build a strong ensemble, the component learners should be with high diversity as well as high accuracy. If perturbing the training set can cause significant changes in the component learners constructed, then Bagging can effectively improve accuracy. However, for stable learners such as nearest neighbor classifiers, perturbing the training set can hardly produce diverse component learners, therefore Bagging does not work well. This paper adapts Bagging to nearest neighbor classifiers through injecting randomness to distance metrics. In constructing the component learners, both the training set and the distance metric employed for identifying the neighbors are perturbed. A large scale empirical study reported in this paper shows that the proposed BagInRand algorithm can effectively improve the accuracy of nearest neighbor classifiers.
关 键 词:BAGGING data mining ensemble learning machine learning Minkowsky distance nearest neighbor value difference metric
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229