检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学电子信息与电气工程学院,上海200030
出 处:《Journal of Southeast University(English Edition)》2004年第4期431-435,共5页东南大学学报(英文版)
基 金:TheNationalNaturalScienceFoundationofChina(No.69931010),
摘 要:This paper describes a new method for active learning in content-based image retrieval. The proposed method firstly uses support vector machine (SVM) classifiers to learn an initial query concept. Then the proposed active learning scheme employs similarity measure to check the current version space and selects images with maximum expected information gain to solicit user's label. Finally, the learned query is refined based on the user's further feedback. With the combination of SVM classifier and similarity measure, the proposed method can alleviate model bias existing in each of them. Our experiments on several query concepts show that the proposed method can learn the user's query concept quickly and effectively only with several iterations.本文提出一种基于内容的图像中的主动学习算法.首先用支撑向量机学习得到初始查询概念,然后用相似性测度对其进行检验,选取信息量最大的样本来请求用户标记,最后在相关反馈的迭代优化过程中获取用户的图像查询概念.算法通过支撑向量机二值分类器与相似性测度2种不同学习模型的融合,来减轻它们各自所存在的模型偏置.实验结果显示,所提算法能够显著提高图像检索的精确度,在少量的反馈迭代之后即能准确地获取目标概念.
关 键 词:active learning content-based image retrieval relevance feedback support vector machines similarity measure
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166