Weierstrass Type Representation of Willmore Surfaces in S^n  

Weierstrass Type Representation of Willmore Surfaces in S^n

在线阅读下载全文

作  者:Qiao Ling XIA Yi Bing SHEN 

机构地区:[1]Department of Mathematics,Zhejiang University

出  处:《Acta Mathematica Sinica,English Series》2004年第6期1029-1046,共18页数学学报(英文版)

基  金:Project supported by the National Natural Science Foundation of China(No.10271106);the Education Hall of Zhejiang Province(No.20030342)

摘  要:In this paper,we reformulate the Euler-Lagrange equations of Willmore surfaces in S^n as the flatness of a family of certain loop algebra-valued 1-forms.Therefore we can give the Weierstrass type representation of conformal Willmore surfaces.We also discuss the relations between conformal Willmore surfaces in S^n and minimal surfaces in constant curvature spaces S^n,R^n,H^n,and prove that some special Willmore surfaces can be derived from minimal surfaces in S^n,R^n,H^n.In this paper,we reformulate the Euler-Lagrange equations of Willmore surfaces in S^n as the flatness of a family of certain loop algebra-valued 1-forms.Therefore we can give the Weierstrass type representation of conformal Willmore surfaces.We also discuss the relations between conformal Willmore surfaces in S^n and minimal surfaces in constant curvature spaces S^n,R^n,H^n,and prove that some special Willmore surfaces can be derived from minimal surfaces in S^n,R^n,H^n.

关 键 词:Willmore surfaces Extended lift of a conformal Willmore immersion Loop group Weierstrass type representation Minimal surface 

分 类 号:O186.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象