检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学数学系,安徽合肥230026
出 处:《中国科学技术大学学报》2005年第1期32-41,共10页JUSTC
摘 要:定义了PMM环.环R称为PMM环,若对任何Morita相似于R的环S,存在m,n∈N,使得Mm(S)同构于Mn(R).证明了如下结果:环R是PMM环当且仅当任给 R的投射生成元P,存在m,n∈N以及R上的Picard投射生成元Q,使得Pm 同构于Qn.具有VBN性质的PMM环是T2 环;具有IBN性质的PM环是T1 环.若交换环R是PMM环,则R是不可分解的且R的Picard群是幂可除的.特别地,Dedekind整环 R是 PMM环当且仅当 R的Picard群是幂可除的.The PMM rings are defined and studied in this paper.A ring R is called a PMM ring if for any ring S which is Morita similar to R,M m(S) is isomorphic to M n(R) for some n,m∈N. The following results are proved in this paper.A ring R is a PMM ring if and only if whenever given a progenerator P over R, there exist m,n∈N and some Picard progenerator Q over R such that P m is isomorphic to Q n. PMM rings with VBN property are just T 2-rings;and with IBN property are T 1-rings. If R is a commutative PMM ring,then R is indecomposable and the Picard group of R is power divisible.In particular,a Dedekind domain R is a PMM ring if and only if the Picard group of R is power divisible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.150.104