SAR图像中海上舰船目标自动检测新方法  被引量:6

A New Method for Automatic Detection of ShipTargets in SAR Images

在线阅读下载全文

作  者:胡应添[1] 徐守时[1] 黄戈祥[1] 吴秀清[1] 

机构地区:[1]中国科学技术大学电子工程和信息科学系,安徽合肥230027

出  处:《遥感技术与应用》2004年第6期461-465,共5页Remote Sensing Technology and Application

基  金:中科院知识创新工程项目(项目编号:KZCX0101)资助。

摘  要:针对中分辨率近岸海域SAR图像,结合已有的舰船检测算法,提出了一种新的海上舰船目标自动检测方法。该方法先根据相应的抽取算法和图像数据映射准则,分离图像中的海洋和陆地区域,并结合最大熵分割法提取海洋背景中包含候选目标的感兴趣区域,最后利用特征匹配方法检测出真正的舰船目标。对50多幅SAR图像进行了试验,其结果表明该方法能自动、快速、准确地检测出图像中舰船目标。Automatic interpretation of synthetic aperture radar (SAR) images is one of the most interesting and important application fields in image processing. Focusing on the medium resolution SAR images and combining with the previous algorithms, a novel technique to detecting ship targets from coastal regions in a fully automatic way is proposed in this paper. This paper presents current progress made on the detection model. In this method, sea regions and land regions were detected firstly according to the corresponding decimation algorithm and thresholding technique. Then the land regions can be masked out from the SAR image based on mapping principle of the image datas. And In order to obtain a high reliability and robustness, the processed processing chain detects possible targets by first searching in parallel for bright spots, i.e. potential ship bodies. Therefore, the sea image with ship targets is processed with maximum entropic algorithm, and we can extract the regions of interest which contain candidate ship targets. And the authentic ship targets were eventually detected by utilizing the method of feature matching. Finally, for later classification and recognition we calculate the feature parameters of every ship. Experimental results on 50 different SAR images are given to demonstrate that this method can automatically detect ship targets from SAR images with high efficiency.

关 键 词:SAR 自动目标检测 视觉特性 特征匹配 

分 类 号:TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象