Finite element investigation of steel built-up shear links subjected to inelastic deformations  被引量:1

Finite element investigation of steel built-up shear links subjected to inelastic deformations

在线阅读下载全文

作  者:Peter Dusicka Ahmad M.Itani Ian G.Buckle 

机构地区:[1]Department of Civil and Environmental Engineering,Portland State University,P O.Box 751,Portland,Oregon,97207,USA Assistant Professor [2]Department of Civil Engineering,Mail Stop 258,University of Nevada,Reno,Nevada,89557,USA Associate Professor [3]Department of Civil Engineering,Mail Stop 258,University of Nevada,Reno,Nevada,89557,USA Professor

出  处:《Earthquake Engineering and Engineering Vibration》2004年第2期195-203,共9页地震工程与工程振动(英文刊)

基  金:the Federal Highway Administration through the Highway Project at the Multidisciplinary Center for Earthquake Engineering Research;the toll bridge retrofit program of the California Department of Transportation through the University of California,San Diego

摘  要:Non-linear finite element models accounting for large displacements have been used to investigate the behavior of steel built-up shear links that had previously been tested using large-scale experiments. The links were designed using steel grades with yield points ranging from high to low strengths. The objectives of the numerical analyses were to further investigate the non-linear behavior and to correlate the numerical results with experimental observations. Elasto-plastic as well as cyclic stress-strain material properties were incorporated to study the influence of material behavior on the overall shear link response. Non-linear monotonie analyses of the shear links incorporating the cyclic stress-strain steel properties resulted in similar trends in the response as the backbone curves recorded from the physical experiments. The numerical models of built-up shear links utilizing structural grade steels closely correlated to the experimentally recorded shear strength. Models utilizing low yield point steels overestimated the shear strength, which was caused by the characteristics of cyclic behavior of those steels. The detailed numerical models also allowed for investigation of the plastic strain demands on the different components of the link. It was shown that finite element models combined with appropriate stress-strain relationship may be used with confidence to check the design of shear links of different steel grades and sectional geometries.Non-linear finite element models accounting for large displacements have been used to investigate the behavior of steel built-up shear links that had previously been tested using large-scale experiments. The links were designed using steel grades with yield points ranging from high to low strengths. The objectives of the numerical analyses were to further investigate the non-linear behavior and to correlate the numerical results with experimental observations. Elasto-plastic as well as cyclic stress-strain material properties were incorporated to study the influence of material behavior on the overall shear link response. Non-linear monotonie analyses of the shear links incorporating the cyclic stress-strain steel properties resulted in similar trends in the response as the backbone curves recorded from the physical experiments. The numerical models of built-up shear links utilizing structural grade steels closely correlated to the experimentally recorded shear strength. Models utilizing low yield point steels overestimated the shear strength, which was caused by the characteristics of cyclic behavior of those steels. The detailed numerical models also allowed for investigation of the plastic strain demands on the different components of the link. It was shown that finite element models combined with appropriate stress-strain relationship may be used with confidence to check the design of shear links of different steel grades and sectional geometries.

关 键 词:finite element investigation steel built-up shear link inelastic deformation 

分 类 号:TU391[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象