检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学机械工程学院,上海200092 [2]同济大学建筑工程系,上海200092
出 处:《计算机工程与应用》2005年第3期31-33,共3页Computer Engineering and Applications
基 金:国家自然科学基金项目(编号:50175009;50275019)资助
摘 要:以并行遗传算法(PGA)为基础,对其早熟、收敛慢等缺陷加以改进,提出一种并行混合免疫遗传算法(PHIGA)。该算法将免疫原理引入到遗传算法中,提高了算法的整体性能。这主要表现在一方面免疫选择可有效地防止早熟,另一方面基于免疫记忆的子群体信息交换策略可加速收敛。算法采用混沌初始化和基于自适应交叉、变异的多种群搜索,与单纯形法的混合可更好地改善其局部搜索性能。文中布局问题的算例验证了该算法的可行性和有效性。The authors propose a parallel hybrid immune genetic algorithm(PHIGA)based on parallel genetic algorithms (PGA)in order to overcome some defects of them,such as premature convergence and slow convergence rate.The global performance of the algorithm is improved by introducing immunity theory into PGA.This is revealed in the following two aspects.One is that immune selection can prevent the algorithm from premature.The other is that convergence rate can be accelerated by individual migration strategy between subpopulations based on immune memory mechanism.In this algorithm,chaos initialization and multiple subpopulations evolution based on adaptive crossover and mutation are adopted.To be hybridized with simplex the method can further improve local searching performance of the algorithm.An example of layout problems shows that PHIGA is feasible and effective.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构] TP391.72[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15