检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学,北京100083
出 处:《中国机械工程》2005年第4期327-331,共5页China Mechanical Engineering
基 金:航空科学基金资助项目(01E51023);北京市自然科学基金资助项目(4012009)
摘 要:针对液压泵故障特征的分散性和模糊性,提出基于振动和压力传感器的信息融合故障诊断方法。在充分分析液压泵球头松动故障机理的基础上,对振动信号和压力信号进行小波消噪处理,有效提取球头松动的故障特征。将不同类型特征参数进行特征层融合,利用主成分分析和改进算法的BP神经网络实现液压泵球头松动故障诊断。试验表明,基于不同类型传感器信息融合故障诊断方法可以有效地实现液压泵微弱故障的诊断。Directing to the dispersiveness and faintness of failure characteristics of hydraulic pump, this paper presented the fault diagnosis method based on data fussions through measuring the vibration signals and pressure signals. On the basis of failure mechanism analysis of slipper loosing, this paper executed the wavelet analysis to cancel the interference existed in the measured signals. In order to improve the efficiency of fault diagnosis, the paper utilized Principal Component Analysis (PCA) and detective verification to decouple the failure eigenvectors. Inducting the reset eigenvectors into BP neural network, this work realized the multiple failure diagnosis with improved algorithm. The experimental results indicate that the method is content.
关 键 词:故障诊断 信息融合 液压泵 主成分分析 小波分析
分 类 号:TH137[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200