Selective Oxidation of Light Hydrocarbons Using Lattice Oxygen Instead of Molecular Oxygen  被引量:5

Selective Oxidation of Light Hydrocarbons Using Lattice Oxygen Instead of Molecular Oxygen

在线阅读下载全文

作  者:沈师孔 李然家 周吉萍 余长春 

机构地区:[1]The Key Laboratory of Catalysis,China National Petroleum Co.,University of Petroleum,Beijing 102249,China

出  处:《Chinese Journal of Chemical Engineering》2003年第6期649-655,共7页中国化学工程学报(英文版)

基  金:Supported by China Petroleum & Chemical Corporation(No.X502015)and the National Natural Science Foundation of China(No. 29792073-2)

摘  要:In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen. For partial oxidation of methane to synthesis gas over LaFeO3 and La0.8Sr0.2FeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode.In this paper, selective oxidation of n-butane to maleic anhydride (MA) and partial oxidation of methane to synthesis gas with lattice oxygen instead of molecular oxygen are investigated. For the oxidation of butane to MA in the absence of molecular oxygen, the Ce-Fe promoted VPO catalyst has more available lattice oxygen and provides higher conversion and selectivity than that of the unpromoted one. It is supposed that the introduction of Ce-Fe complex oxides improves redox performance of VPO catalyst and increases the activity of lattice oxygen.For partial oxidation of methane to synthesis gas over LaFeO3 and Lao.8Sro.gFeO3 oxides, the reaction with flow switched between 11% O2-Ar and 11% CH4-He at 900℃ was carried out. The results show that methane can be oxidized to CO and H2 with selectivity over 93% by the lattice oxygen of the catalyst in an appropriate reaction condition, while the lost lattice oxygen can be supplemented by air re-oxidation. It is viable for the lattice oxygen of the LaFeO3 and La0.8Sr0.2FeO3 catalyst instead of molecular oxygen to react with methane to synthesis gas in the redox mode.

关 键 词:selective oxidation lattice oxygen N-BUTANE maleic anhydride Ce-Fe promoted VPO catalysts METHANE synthesis gas La1-xSrxFeO3 perovskite catalysts 

分 类 号:O621[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象