A New Algorithm for Sea Fog/Stratus Detection Using GMS-5 IR Data  被引量:22

A new algorithm for sea fog/stratus detection using GMS-5 IR data

在线阅读下载全文

作  者:Myoung-HwanAHN Eun-HaSOHN Byong-JunHWANG 

机构地区:RemoteSensingResearchLaboratory,MeteorologicalResearchInstitute,KoreanMeteorologicalAdministration,Seoul156-720,Korea

出  处:《Advances in Atmospheric Sciences》2003年第6期899-913,共15页大气科学进展(英文版)

基  金:This work was supported by the Basic Research Project (Satellite Data Processing Technique) of METRI

摘  要:A new algorithm for the detection of fog/stratus over the ocean from the GMS-5 infrared (IR) channel data is presented. The new algorithm uses a clear-sky radiance composite map (CSCM) to compare the hourly observations of the IR radiance. The feasibility of the simple comparison is justified by the theoretical simulations of the fog effect on the measured radiance using a radiative transfer model. The simulation results show that the presence of fog can be detected provided the visibility is worse than 1 km and the background clear-sky radiances are accurate enough with known uncertainties. For the current study, an accurate CSCM is constructed using a modified spatial and temporal coherence method, which takes advantage of the high temporal resolution of the GMS-5 observations. The new algorithm is applied for the period of 10–12 May 1999, when heavy sea fog formed near the southwest coast of the Korean Peninsula. Comparisons of the fog/stratus index, defined as the difference between the measured and clear-sky brightness temperature, from the new algorithm to the results from other methods, such as the dual channel difference of NOAA/AVHRR and the earth albedo method, show a good agreement. The fog/stratus index also compares favorably with the ground observations of visibility and relative humidity. The general characteristics of the fog/stratus index and visibility are relatively well matched, although the relationship among the absolute values, the fog/stratus index, visibility, and relative humidity, varies with time. This variation is thought to be due to the variation of the atmospheric conditions and the characteristics of fog/stratus, which affect the derived fog/stratus index.A new algorithm for the detection of fog/stratus over the ocean from the GMS-5 infrared (IR) channel data is presented. The new algorithm uses a clear-sky radiance composite map (CSCM) to compare the hourly observations of the IR radiance. The feasibility of the simple comparison is justified by the theoretical simulations of the fog effect on the measured radiance using a radiative transfer model. The simulation results show that the presence of fog can be detected provided the visibility is worse than 1 km and the background clear-sky radiances are accurate enough with known uncertainties. For the current study, an accurate CSCM is constructed using a modified spatial and temporal coherence method, which takes advantage of the high temporal resolution of the GMS-5 observations. The new algorithm is applied for the period of 10–12 May 1999, when heavy sea fog formed near the southwest coast of the Korean Peninsula. Comparisons of the fog/stratus index, defined as the difference between the measured and clear-sky brightness temperature, from the new algorithm to the results from other methods, such as the dual channel difference of NOAA/AVHRR and the earth albedo method, show a good agreement. The fog/stratus index also compares favorably with the ground observations of visibility and relative humidity. The general characteristics of the fog/stratus index and visibility are relatively well matched, although the relationship among the absolute values, the fog/stratus index, visibility, and relative humidity, varies with time. This variation is thought to be due to the variation of the atmospheric conditions and the characteristics of fog/stratus, which affect the derived fog/stratus index.

关 键 词:sea fog GMS-5 

分 类 号:P732[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象