APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDO-CONTRACTIVE MAPPING WITHOUT LIPSCHITZ ASSUMPTION  被引量:1

APPROXIMATION OF FIXED POINTS OF STRICTLY PSEUDO-CONTRACTIVE MAPPING WITHOUT LIPSCHITZ ASSUMPTION

作  者:Huang ZhenyuDept. of Math.,Nanjing Univ.,Nanjing 210093. 

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2000年第1期73-77,共5页高校应用数学学报(英文版)(B辑)

摘  要:Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.Without the Lipschitz assumption and boundedness of K in arbitrary Banach spaces, the Ishikawa iteration {x n} ∞ n=1 defined byx 1∈K,\ x n+1 =(1-α n)x n+α nTy n,\ y n=(1-β n)x n+β nTx n,\ n≥1satisfying 0<α n,β n<1 ,for all n≥1;∑ ∞ n=1 α n=∞;α n→0,β n→0 as n→∞ is proved to converge strongly to the unique fixed point of T ,where T:K→K is a uniformly continuous strictly pseudo\|contractive operator with bounded range.

关 键 词:Strictly pseudo-contractive Ishikaw a iterative process arbitrary real Banach spaces uni- form ly continuous 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象