ITERATIVE APPROXIMATION OF FIXED POINTS OF (ASYMPTOTICALLY) NONEXPANSIVE MAPPINGS  被引量:8

ITERATIVE APPROXIMATION OF FIXED POINTS OF (ASYMPTOTICALLY) NONEXPANSIVE MAPPINGS

在线阅读下载全文

作  者:Zeng LuchuanDept. of Math.,Shanghai Normal Univ.,Shanghai 200234. 

出  处:《Applied Mathematics(A Journal of Chinese Universities)》2001年第4期402-408,共7页高校应用数学学报(英文版)(B辑)

基  金:Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOE;P.R.C

摘  要:Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.

关 键 词:Fixed point (asymptotically)nonexpansive mapping modified Ishikawa iteration process Frechet differentiable norm Opial condition. 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象