检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家地震局地震研究所
出 处:《地壳形变与地震》1994年第3期42-50,共9页Crustal Deformation and Earthquake
摘 要:本文简单地回顾了从热力学熵到拓扑熵的熵概念发展历史以及熵理论在地震预报中的应用,着重介绍了Kolmogorov熵的理论背景、计算方法、估计方法以及它与系统动力学行为的可预报性问题的关系。以京津唐地区为例,对时间域计算了K熵在唐山大震前后的变化情况,得出大震前系统存在K熵下降的趋势,震后又回升。以多台的空间域综合方法计算得到K熵大于零,对于10-5~10-6的观测精度其可报期限为4~5年。In this paper,we reviewed the history of the concept of entropy from thermodynamics entropy to topological entropy and its application to earthquake prediction. Futher the theory backgrcund,calculation and estimation methods of the Kolmogorov entropy(metricentropy)and the relationship between the K-entropy and the predictability of the dynamic behavior of a system are reported.Taking Beijing-Tianjing area as an example,we calculated the K-entropy and the predictuble term of the time field and the space field.It is found that the K-entropy reduced before large earthquakes and recovered after earthquakes in the time field,and that the K-entropy of the seismogenic system is larger than zero in the space field.This shows that this system has chaotie behavior,meanwhile that the predictable term of the system is 4~5 years.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229