蕴震系统的Kolmogorov熵及其可预报性  被引量:3

KOLMOGOROV ENTROPY OF SEISMOGENIC SYSTEM AND ITS PREDICTABILITY

在线阅读下载全文

作  者:陈子林[1] 周硕愚[1] 

机构地区:[1]国家地震局地震研究所

出  处:《地壳形变与地震》1994年第3期42-50,共9页Crustal Deformation and Earthquake

摘  要:本文简单地回顾了从热力学熵到拓扑熵的熵概念发展历史以及熵理论在地震预报中的应用,着重介绍了Kolmogorov熵的理论背景、计算方法、估计方法以及它与系统动力学行为的可预报性问题的关系。以京津唐地区为例,对时间域计算了K熵在唐山大震前后的变化情况,得出大震前系统存在K熵下降的趋势,震后又回升。以多台的空间域综合方法计算得到K熵大于零,对于10-5~10-6的观测精度其可报期限为4~5年。In this paper,we reviewed the history of the concept of entropy from thermodynamics entropy to topological entropy and its application to earthquake prediction. Futher the theory backgrcund,calculation and estimation methods of the Kolmogorov entropy(metricentropy)and the relationship between the K-entropy and the predictability of the dynamic behavior of a system are reported.Taking Beijing-Tianjing area as an example,we calculated the K-entropy and the predictuble term of the time field and the space field.It is found that the K-entropy reduced before large earthquakes and recovered after earthquakes in the time field,and that the K-entropy of the seismogenic system is larger than zero in the space field.This shows that this system has chaotie behavior,meanwhile that the predictable term of the system is 4~5 years.

关 键 词:地震预报 蕴震系统  可预报性 

分 类 号:P315.7[天文地球—地震学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象