挤出胀大流动的有限元方法研究(Ⅰ)牛顿流体  

Finite Element Methods for the Die Swell Problem(Ⅰ) Newtonian Fluid

在线阅读下载全文

作  者:范毓润[1] 范西俊[1] 路甬祥[1] 

机构地区:[1]浙江大学

出  处:《水动力学研究与进展(A辑)》1989年第3期37-44,共8页Chinese Journal of Hydrodynamics

摘  要:本文首次成功地将压力不连续的非协调单元和罚函数法用于挤出胀大流动的有限元计算。对牛顿流体的平面流和轴对称流的计算中比较了下列方法:压力连续单元的混合法;压力不连续的混合法;一致性罚函数法;降阶积分罚函数法;改进的降阶积分罚函数法。结果表明压力不连续单元使连续性方程得到更好的满足,从而使自由面迭代更快地收敛,降低了计算量。罚函数法使计算量进一步减少,并且解的精度也足够好。The problems of creeping flow of Newtonian fluid extruded from a plane slit or a circular pipe are simulated using several kinds of finite element method. The following methods are compared: the common used continuous-pressure-element; the discontinuous-pressure-element; the consistant penalty method; the selective reduced integration penalty method and the modified selective reduced integration penalty method. It is convinced that the discontinuous interpolation of pressure results in more accurate mass conservation and more rapid convergence of the free surface iteration than the continuous one. The selective reduced integration penalty method can further decrease the cost of simulation with sufficient accuracy of solutions.

关 键 词:流动 有限元法 牛顿流体 蠕流 

分 类 号:O357.2[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象