检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学动力工程系,东南大学计算机科学与工程系
出 处:《南京航空航天大学学报》1994年第4期560-563,共4页Journal of Nanjing University of Aeronautics & Astronautics
基 金:国防科工委预研基金
摘 要:首先选用的解析函数由速度模以及流向角组成,在已知通道边界上的流向角时,求得通道边界上的速度。由势函数和流函数的定义,求出壁面上的势函数及流函数。其次将解析函数用势函数表示,运用Plemelj边界积分关系的内点公式,求得通道内任意点的势函数和流函数。由此,从等势线和等流函数值线,可形成流体力学数值计算用的正交网格。文中给出两个算例,该方法无需迭代。A new method is reviewed to solve the velocity potential and the stream function in a two-dimensional incompressible inviscid channel flow by using Plemelj's boundary integral formula. Firstly, the analytic function consists of the velocities and the flow angles around the channel boundary. If the angles are known, the velocities can be solved with Plemelj's boundary integral formula. Secondly the velocity potential and stream functions around the boundary are obtained by numerical deviation approaching according to the relationship between the velocities and velocity potential and stream function. Finally the analytic function consists of velocity potential and stream function whose values at any inner point should be calculated by Plemelj's boundary integral formula. The isograms of the velocity potentials and stream functions are used to form the orthogonal computational grids. The advantage in this method is free from using iteration.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49