检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡先蕙
出 处:《数学学报(中文版)》1994年第3期420-422,共3页Acta Mathematica Sinica:Chinese Series
摘 要:MHR-环指的是其主右理想适合极小条件的环.本文的环指的是结合环,未必有单位元. F.A.Szasz在他的专著“Radical of Rings”[1]中提出一系列问题,其中第31问题是:是否存在一个诣零MHR-环(或任意MHR-环),其有限生成右理想不适合极小条件?本文证明了:任意一个MHR-环其有限生成右理想均适合极小条件.从而给出了F.A.Szasz第31问题的完全解答.By an MHR-ring, we mean a ring with minimum condition on principal right ideals. In this note, we prove that, the MHR-ring is satisfy the minimum condition for finitely generated right ideal. So give a complete answer to the 31th problem of szasz.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145