检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Shanghai Institute of Applied Mathematics and Mechanics [2]Department of Mathematics, Shanghai University, Shanghai 200072, P.R.China [3]Department of Mathematics and Informational Science, Yantai University, Yantai,Shandong 264005, P.R.China
出 处:《Applied Mathematics and Mechanics(English Edition)》2005年第2期185-194,共10页应用数学和力学(英文版)
基 金:theNationalNaturalScienceFoundationofChina ( 1 0 2 72 0 69) ;theMunicipalKeySubjectProgramofShanghaiofChina
摘 要:The problem of spherical cavitated bifurcation was examined for a class of incompressible generalized neo-Hookean materials, in which the materials may be viewed as the homogeneous incompressible isotropic neo-Hookean material with radial perturbations. The condition of void nucleation for this problem was obtained. In contrast to the situation for a homogeneous isotropic neo-Hookean sphere, it is shown that not only there exists a secondary turning bifurcation point on the cavitated bifurcation solution which bifurcates locally to the left from trivial solution, and also the critical load is smaller than that for the material with no perturbations, as the parameters belong to some regions. It is proved that the cavitated bifurcation equation is equivalent to a class of normal forms with single-sided constraints near the critical point by using singularity theory. The stability of solutions and the actual stable equilibrium state were discussed respectively by using the minimal potential energy principle.The problem of spherical cavitated bifurcation was examined for a class of incompressible generalized neo-Hookean materials, in which the materials may be viewed as the homogeneous incompressible isotropic neo-Hookean material with radial perturbations. The condition of void nucleation for this problem was obtained. In contrast to the situation for a homogeneous isotropic neo-Hookean sphere, it is shown that not only there exists a secondary turning bifurcation point on the cavitated bifurcation solution which bifurcates locally to the left from trivial solution, and also the critical load is smaller than that for the material with no perturbations, as the parameters belong to some regions. It is proved that the cavitated bifurcation equation is equivalent to a class of normal forms with single-sided constraints near the critical point by using singularity theory. The stability of solutions and the actual stable equilibrium state were discussed respectively by using the minimal potential energy principle.
关 键 词:incompressible generalized neo-Hookean material cavitated bifurcation normal form stability and catastrophe
分 类 号:TB39[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229