检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics and Physics, Dalian Maritime University, Dalian 116026, P.R.China [2]Department of Economics, Fukuoka University, Fukuoka 814-01, Japan
出 处:《Applied Mathematics and Mechanics(English Edition)》2005年第2期195-199,共5页应用数学和力学(英文版)
基 金:theConstructionFoundationoftheCommunicationsMinistryofChina ( 752 1 4 7)
摘 要:A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.
关 键 词:dyadic Green's function non-divergence component irrotational component electromagnetic wave field charge field chiral medium
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28