检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:PingZhiYUAN HaiBoCHEN
机构地区:[1]DepartmentofMathematics,SunYat-SenUniversity,Guangzhou510275,P.R.China [2]DepartmentofMathematics,CentralSouthUniversity(TiedaoCampus),Changsha410075,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2005年第1期193-196,共4页数学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.10071016)
摘 要:Let a_0 < a_1 < … < a_n be positive integers with sums Σ_(i=0)~n∈_ia_i(∈_i = 0,1) distinct. P. Erdos conjectured that Σ_(i=0)~n 1/a_i ≤ Σ_(i=0)~n 1/2~i. Thebest known result along this line is that of Chen: Let f be any given convex decreasing function on[A, B] with α_0, α_1, …, α_n , β_0, β_1, …, β_n being real numbers in [A, B] with α_0 ≤α_1 ≤ … ≤ α_n, Σ_(i=0)~n α_i ≥ Σ_(i=0)~n β_i, k = 0, …, n. Then Σ_(i=0)~n f(α_i) ≤Σ_(i=0)~n f(β_i). In this paper, we obtain two generalizations of the above result; each is ofspecial interest in itself. We prove:Theorem 1 Let f and g be two given non-negative convex decreasing functions on [A, B], and α_0,α_1, …, α_n , β_0, β_1, …, β_n, α'_0, α'_1, …, α'_n , β'_0, β'_1, …, β'_n be realnumbers in [A, B] with α'_0 ≤ α'_1 ≤ … ≤ α_n. Then Σ_(i=0)~n f(α_i)g(α'_i) ≤ Σ_(i=0)~nf(β_i)g(β'_i), k = 0, …, n. Theorem 2 Let f be any given convex decreasing function on [A, B]with k_0, k_1, …, k_n being nonnegative real numbers and α_0, α_1, …, α_n , β_0, β_1, …,β_n being real numbers in [A, B] with α_0 ≤ α_1 ≤ … ≤ α_n, Σ_(i=0)~t k_i α_i ≥ Σ_(i=0)~tk_iβ_i, t = 0, …, n. Then Σ_(i=0)~t k_if(α_i) ≤ Σ_(i=0)~t k_if_(β_i).Let a_0 < a_1 < … < a_n be positive integers with sums Σ_(i=0)~n∈_ia_i(∈_i = 0,1) distinct. P. Erdos conjectured that Σ_(i=0)~n 1/a_i ≤ Σ_(i=0)~n 1/2~i. Thebest known result along this line is that of Chen: Let f be any given convex decreasing function on[A, B] with α_0, α_1, …, α_n , β_0, β_1, …, β_n being real numbers in [A, B] with α_0 ≤α_1 ≤ … ≤ α_n, Σ_(i=0)~n α_i ≥ Σ_(i=0)~n β_i, k = 0, …, n. Then Σ_(i=0)~n f(α_i) ≤Σ_(i=0)~n f(β_i). In this paper, we obtain two generalizations of the above result; each is ofspecial interest in itself. We prove:Theorem 1 Let f and g be two given non-negative convex decreasing functions on [A, B], and α_0,α_1, …, α_n , β_0, β_1, …, β_n, α'_0, α'_1, …, α'_n , β'_0, β'_1, …, β'_n be realnumbers in [A, B] with α'_0 ≤ α'_1 ≤ … ≤ α_n. Then Σ_(i=0)~n f(α_i)g(α'_i) ≤ Σ_(i=0)~nf(β_i)g(β'_i), k = 0, …, n. Theorem 2 Let f be any given convex decreasing function on [A, B]with k_0, k_1, …, k_n being nonnegative real numbers and α_0, α_1, …, α_n , β_0, β_1, …,β_n being real numbers in [A, B] with α_0 ≤ α_1 ≤ … ≤ α_n, Σ_(i=0)~t k_i α_i ≥ Σ_(i=0)~tk_iβ_i, t = 0, …, n. Then Σ_(i=0)~t k_if(α_i) ≤ Σ_(i=0)~t k_if_(β_i).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222