检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国科学院研究生院学报》2005年第2期210-217,共8页Journal of the Graduate School of the Chinese Academy of Sciences
摘 要:隐马尔科夫模型在很多方面已有广泛应用 .讨论了一类更为一般的模型 ,这类模型由WojciechPieczynski首次提出 ,并且给出了在图像识别中的应用 .这里首次给出在离散观测和离散状态下该模型的精确数学描述 ,其中包括建模、状态估计和参数估计 。It is well-known that HMM has been widely used in many fields. In this paper we will discuss a more general model, which is similar to Pairwise Markov Model(PM M) proposed by Wojciech Pieczynski. Compared to HMM, the state process here is n ot necessarily a Markov chain. So it has more general applications in image segm entation, speech signal processing, and etc. We will give a complete mathematica l description for this model with discrete states and discrete observations, inc luding modeling, state estimation and parameter estimation, which haven't been s tudied before. Based on the method proposed here, we will get a recursive algori thm for the estimation of the state and the parameters.
关 键 词:测度变换 递归参数估计 递归状态估计 广义隐马尔科夫模型
分 类 号:O211.62[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229