Scaling Argument of Anisotropic Random Walk  

Scaling argument of anisotropic random walk

在线阅读下载全文

作  者:XUBing-Zhen JINGuo-Jun WANGFei-Feng 

机构地区:[1]NationalLaboratoryofSolidStateMicrostructure~NanjingUniversity,Nanjing210093,China//InstituteofModernPhysics,NingboUniversity,Ningbo315211,China [2]NationalLaboratoryofSolidStateMicrostructure,NanjingUniversity,Nanjing210093,China [3]InstituteofModernPhysics,NingboUniversity,Ningbo315211,China

出  处:《Communications in Theoretical Physics》2005年第3期449-454,共6页理论物理通讯(英文版)

基  金:国家自然科学基金,浙江省自然科学基金

摘  要:In this paper, we analytically discuss the scaling properties of the average square end-to-end distance < R-2 > for anisotropic random walk in D-dimensional space (D >= 2), and the returning probability P-n(r(0)) for the walker into a certain neighborhood of the origin. We will not only give the calculating formula for < R-2 > and P-n(r(0)), but also point out that if there is a symmetric axis for the distribution of the probability density of a single step displacement, we always obtain < R-perpendicular to n(2) > similar to n, where perpendicular to refers to the projections of the displacement perpendicular to each symmetric axes of the walk; in D-dimensional space with D symmetric axes perpendicular to each other, we always have < R-n(2)> similar to n and the random walk will be like a purely random motion; if the number of inter-perpendicular symmetric axis is smaller than < R-n(2)> similar to n(2) the dimensions of the space, we must have n for very large n and the walk will be like a ballistic motion. It is worth while to point out that unlike the isotropic random walk in one and two dimensions, which is certain to return into the neighborhood of the origin, generally there is only a nonzero probability for the anisotropic random walker in two dimensions to return to the neighborhood.

关 键 词:SCALING anisotropic random walk average square end-to-end distance returning probability 

分 类 号:O412.1[理学—理论物理] O158[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象