水电站厂内经济运行准实时系统研究  被引量:4

Study on Quasi Real Time System of Economical Operation of Hydropower Plant

在线阅读下载全文

作  者:徐晨光[1] 赵麦换[2] 黄强[3] 

机构地区:[1]华北水利水电学院,郑州450008 [2]黄河勘测规划设计有限公司,郑州450003 [3]西安理工大学水利水电学院,西安710048

出  处:《中国农村水利水电》2005年第3期84-86,共3页China Rural Water and Hydropower

基  金:国家重点基础发展规划"973"项目(G1999043608)。

摘  要: 为提高水电站参与电力市场竞争的能力,须建立水电站厂内经济运行准实时系统。结合不同类型水轮机组的特性,探讨了水电站厂内经济运行准实时系统任务时限的确定,并就水电站厂内经济运行准实时系统的一个主要难点问题———水轮机组耗水量的在线计算,提出一种在线训练、在线应用的神经网络计算模型。实例研究表明,采用神经网络方法实现水轮机组耗水量的在线计算,不仅能提高计算精度,而且能够满足水电站厂内经济运行的实时性要求。In order to enhance the competition capability of hydropower plant in power market, the quasi real-time system of economical operation of hydropower plant (EOHP) should be built. According to the properties of different types of water turbine generator units, the deadline determination of the quasi real-time system task of EOHP is discussed. An online-training neural network model is proposed to calculate the flow consumption of water turbine generator units, which is the most difficult problem of the quasi real-time system of EOHP. The case study shows that the online calculation of the flow consumption by the online-training neural network model can improve the calculation precision and meet the requirement of the real-time system of EOHP.

关 键 词:厂内经济运行 准实时系统 耗水量 负荷分配 任务时限 

分 类 号:TV736[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象