UNIFICATION AND APPLICATIONS OF MODERN OCEANIC/ATMOSPHERIC DATA ASSIMILATION ALGORITHMS  被引量:2

UNIFICATION AND APPLICATIONS OF MODERN OCEANIC/ATMOSPHERIC DATA ASSIMILATION ALGORITHMS

在线阅读下载全文

作  者:QIAOFang-li ZHANGShao-qing YUANYe-li 

机构地区:[1]InstituteofOceanography,ChineseAcademyofSciences,Qingdao266071,China [2]GeophysicalFluidDynamicsLaboratory,PrincetonUniversity,Princeton,NJ08542,USA [3]KeyLaboratoryofMarineScienceandNumericalModeling,TheFirstInstituteofOceanography,StateOceanicAdministration,Qingdao266061,China

出  处:《Journal of Hydrodynamics》2004年第5期501-517,共17页水动力学研究与进展B辑(英文版)

基  金:theNationalKeyBasicResearchProgram (GrantNo:G19990 4 380 9)

摘  要:The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.The key mathematics and applications of various modern atmospheric/oceanicdata assimilation methods including Optimal Interpolation (OI), 4-dimensional variational approach(4D-Var) and filters were systematically reviewed and classified. Based on the data assimilationphilosophy, i. e. , using model dynamics to extract the observational information, the commoncharacter of the problem, such as the probabilistic nature of the evolution of theatmospheric/oceanic system, noisy and irregularly spaced observations, and the advantages anddisadvantages of these data assimilation algorithms, were discussed. In the filtering framework, allmodern data assimilation algorithms were unified: OI/3D-Var is a stationary filter, 4D-Var is alinear (Kalman) filter and an ensemble of Kalman filters is able to construct a nonlinear filter.The nonlinear filter such as the Ensemble Kalman Filter (EN-KF), Ensemble Adjustment Kalman Filter(EAKF) and Ensemble Transformation Kalman Filter (ETKF) can, to some extent, account for thenon-Gaussian information of the prior distribution from the model. The flow-dependent covarianceestimated by an ensemble filter may be introduced to OI and 4D-Var to improve these traditionalalgorithms. In practice, the performance of algorithms may depend on the specific numerical modeland the choice of algorithm may depend on the specific problem. However, the unification ofalgorithms allows us to establish a unified test system to evaluate these algorithms, which providesmore insights into data assimilation philosophies and helps improve data assimilation techniques.

关 键 词:data assimilation oceanic/atmospheric system FILTERING optimalinterpolation (OI) 4-dimensional variational(4D-Var) approach 

分 类 号:P732.6[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象