天气和气候的时间序列特征分析  被引量:28

The characteristic analysis of weather and climate time series

在线阅读下载全文

作  者:时少英[1] 刘式达[1] 付遵涛[1] 刘式适[1] 梁福明[1] 辛国君[1] 李百炼 

机构地区:[1]北京大学物理学院大气科学系 [2]Ecological Complexity and Modeling Laboratory, Department of Botany & Plant Sciences, University of California Riverside CA92521-0124

出  处:《地球物理学报》2005年第2期259-264,共6页Chinese Journal of Geophysics

基  金:科技部科研院所社会公益专项基金 (2 0 0 2DIB2 0 0 70 );国家自然科学基金项目 (4 0 3 0 5 0 0 6)资助

摘  要:本文从天气和气候资料出发,提出气候的q阶(0≤q≤1)微商是天气,而天气可以近似为白噪声.在此基础上,利用描述自相似非马尔可夫随机过程的时间分数维扩散方程的分析成果,并结合时间序列的相关性分析,从理论上进一步指出气候信号的记忆性好于天气信号,且其概率密度分布的尾巴比较长.By using the result of the time-fractional diffusion equation that presents a self-similar non-Markovian stochastic process, in this paper, we proposed our views on the relationship between weather and climate on the basis of the observational data from Beijing and Jinan: weather can be interpreted as the white noise, and the fractional derivative of order q of climate(0≤q≤1)is weather; furthermore, after studying the climatic discrete models and making correlation analysis of time series, we point out that a climate time series has a better memory and its probability density function has a longer tail with respect to the weather.

关 键 词:分数维导数 天气 气候 记忆性 概率密度分布 

分 类 号:P466[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象