The Generalization of a Converse of Matrix Inequality  

The Generalization of a Converse of Matrix Inequality

在线阅读下载全文

作  者:FENGXiao-xia YANGZhong-peng 

机构地区:[1]FacultyofScience,Xi'anJiaotongUniversity,Xi'an710049,China 2.DepartmentofMathematics,BeihuaUniversity,Jilin132011,China [2]DepartmentofMathematic,PutianUniversity,Putian351100,China

出  处:《Chinese Quarterly Journal of Mathematics》2005年第1期21-27,共7页数学季刊(英文版)

基  金:Supported by the Science Foundation of Educational Commission of Fujian Province (JA03157)Supported by the Scientific Research Item of Putian University(20042002)

摘  要:We prove that the inequality holds, when a m × n real matrix X = (xij) whose entries are not all equal to 0 satisfies Therefore we not only generalize the results of Horst Alzer [2] from non-negative matrix to real matrix, but also complete a result of E R van Dam [1], which indicated that the best possible upper bound is equal to 1 for real matrix.

关 键 词:real matrix TRACE INEQUALITY lower bound 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象