检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周化岚[1] 魏刚[1] 刘志国[1] 王丽[1] 宋永海[1] 李壮[1]
机构地区:[1]中国科学院长春应用化学研究所电分析化学国家重点实验室,长春130022
出 处:《高等学校化学学报》2005年第4期757-759,共3页Chemical Journal of Chinese Universities
基 金:国家自然科学基金(批准号:30070417)资助.
摘 要:Dip-pen nanolithography(DPN) has been developed to pattern monolayer film of various molecules in submicrometer dimensions through the controlled movement of ink-coated atomic force microscopy(AFM) tip on a desired substrate, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this letter, using direct-write dip-pen nanolithography to generate nanoscale patterns of poly-L-lysine on mica was described. Poly-L-lysine molecules can anchor themselves to the mica surface through electrostatic interaction force, so stable poly-L-lysine patterns, such as square, line, circle and cross, could be obtained on freshly cleaved mica surface. From AFM image of the patterned poly-L-lysine nanostructures on mica, we know that poly-L-lysine was flatly bound to the mica surface. These oriented patterns of poly-L-lysine on mica can provide the prospect of building functional nanodevices and offer new options for this technique in a variety of other significant biomolecules.Dip-pen nanolithography(DPN) has been developed to pattern monolayer film of various molecules in submicrometer dimensions through the controlled movement of ink-coated atomic force microscopy(AFM) tip on a desired substrate, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this letter, using direct-write dip-pen nanolithography to generate nanoscale patterns of poly-L-lysine on mica was described. Poly-L-lysine molecules can anchor themselves to the mica surface through electrostatic interaction force, so stable poly-L-lysine patterns, such as square, line, circle and cross, could be obtained on freshly cleaved mica surface. From AFM image of the patterned poly-L-lysine nanostructures on mica, we know that poly-L-lysine was flatly bound to the mica surface. These oriented patterns of poly-L-lysine on mica can provide the prospect of building functional nanodevices and offer new options for this technique in a variety of other significant biomolecules.
关 键 词:Dip-pen刻蚀技术 聚-L-赖氨酸 纳米结构
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31