检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学土木学院,辽宁大连116024 [2]哈尔滨工业大学,黑龙江哈尔滨150006
出 处:《岩土工程学报》2005年第4期374-377,共4页Chinese Journal of Geotechnical Engineering
摘 要:从热弹性力学的基本方程出发,采用Hankel 积分变换和Laplace 积分变换等数学手段,首先推导出了单层弹性半空间轴对称体的温度应力问题的刚度矩阵,然后按传统有限元的方法组成总体刚度矩阵。通过求解由总体刚度矩阵所构成的代数方程组,再对其进行Hankel 和Laplace 积分逆变换就可解出在外荷载和温度联合作用下多层弹性半空间轴对称问题的解析解。由于刚度矩阵的元素中不含有正指数项,计算时不会出现溢出的现象,从而克服了传递矩阵法的缺点。在推导过程中,因不用事先人为的选择应力函数,使得问题的求解更加合理,同时也为进一步研究这类问题如湿度场、动力学等奠定了理论基础。最后,文中还给出了计算实例来证明推导结果的正确性。In the paper, thermo-stress in multilayered elastic half space is presented. Firstly, the stiffness matrix for a layer is derived based on the fundamental elasticity equations and some mathematic methods such as Hankel integral transformation. Then the global stiffness matrix is established for multilayered elastic half space using the finite element concepts in which layers are completely contacted. Therefore, explicit solution for axisymmetrical problems in multilayered elastic half space is obtained from the solution of the algebraic equation formed by global stiffness matrix and the inverse Hankel integral transformation. Because positive exponential function is not included in the element of matrix, the calculation is not overflowed. Therefore, the shortages of transfer matrix method are overcome. This method is clear in concept, and the corresponding formulas given in the paper are not only simple but also convenient for application. More important is that this method can be used to solve other problems of multilayered elastic half space such as thermo field and dynamics. An example of road surface deflection is presented to prove the calculated results.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.248.230