国际疾病分类编码质量抽样调查与分析  被引量:8

Sampling Survey of Quality of International Classification of Disease

在线阅读下载全文

作  者:欧阳菊香[1] 陈碧丹[2] 

机构地区:[1]广东省佛山市第一人民医院,528000 [2]广东省广州市第一人民医院

出  处:《中国医院统计》2005年第1期14-17,共4页Chinese Journal of Hospital Statistics

摘  要:目的 调查某院国际疾病分类的质量,寻求出院诊断书写科学、规范及其分类编码准确的有效方法。方法对某三级甲等综合医院2003年7月至2004年6月的39547份出院病历总体进行对称系统抽样,得到791份样本,对每一样本的出院诊断及其分类编码逐一核查。结果发现由于出院诊断书写不科学、不规范,编码员医学知识掌握得不够、国际疾病分类原则分类方法不熟悉和工作不严谨等原因,使得在抽出的样本中有130份病历分类错误,错误编码168个,错码率7. 6%。结论加强对医生进行诊断书写的培训,提高出院诊断书写的科学性和规范性;拓宽编码员医学知识和分类知识的广度与深度,增强其工作的责任心,才能提高疾病分类的准确性。Objective To survey the quality of International Classification of Disease in a certain hospital and seek the scientific and standard writing method for diagnosis, together with the exact method for Classification of Disease. Methods A sample of 791 cases with symmetry systematic sampling from 39446 medical records in a certain Third Grade and First Class general hospital between July 1,2003 and June 30,2004 was gained, the discharge diagnosis and the codes of the sample were checked one by one. Results Because of staffers lacking of medical knowledge, being unfamiliar with the principle of ICD, not being cautious with working, and the discharge diagnosis not being scientific and standard, there were a total of 130 records with errors, including 168 wrong codes, the error rate was 7.6%. Conclusion In order to enhance the accuracy of Classification of Disease, training the doctors in writing diagnosis should be strengthened to make the discharge diagnosis more scientific and normative, persons who are engaged on classification should know medical knowledge well, and take high responsibility for working. Key words ICD Sampling survey Discharge diagnosis

关 键 词:国际疾病分类 调查与分析 编码质量 三级甲等综合医院 2004年6月 2003年7月 诊断书写 分类编码 医学知识 系统抽样 出院病历 有效方法 出院诊断 分类方法 分类原则 编码员 样本 不规范 规范性 科学性 责任心 准确性 

分 类 号:R197.323[医药卫生—卫生事业管理] R969.3[医药卫生—公共卫生与预防医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象