检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学信息与通信工程研究所,浙江杭州310027
出 处:《江南大学学报(自然科学版)》2005年第2期129-133,共5页Joural of Jiangnan University (Natural Science Edition)
摘 要:针对大规模SOC的测试问题,基于不同优先级、资源、芯核约束的SOC测试优化模型,引入了SOC测试调度用神经网络, 同时利用试探性随机搜索技术对神经网络进行了改进. 仿真结果表明,采用已改进的神经网络不仅能解决SOC的测试问题,而且能够在一个合理的计算时间内找到最优解,在解决SOC测试调度问题方面具有较优异的性能.To solve the large size SOC test problems, the modeling of Sytem-On-a-Chip (SOC) test optimization has been formulated with different precedence, resource and core constraints.A neural network for SOC test scheduling is firstly presented,then, a neural network combined with heuristic algorithm has been developed to solve the large size SOC test problems.As demonstrated by the results that computer implement,the developed method can not only solve the large size SOC test problems, but also be capable of finding the optimal solutions within reasonable computing time. As the result shows, it has good performance in solving SOC test scheduling problems.
分 类 号:TN407[电子电信—微电子学与固体电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.202