检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李琳[1] 周文辉[2] 谭述森[1] 张尔扬[3]
机构地区:[1]北京环球信息应用开发中心,北京100094 [2]南京电子技术研究所,江苏南京210013 [3]国防科技大学电子科学与工程学院,湖南长沙410073
出 处:《通信学报》2005年第4期80-87,共8页Journal on Communications
摘 要:为解决扩频系统在动态环境下的干扰抑制问题,分析了从最小均方误差(MMSE)准则和约束最小均值输出能量(MMOE)准则导出的递推最小二乘(RLS)算法和盲递推最小二乘(BRLS)算法的性能。采用正交三角分解克服两算法数值稳定性差,运算量大,很难并行实现的缺点,讨论了正交三角分解——递推最小二乘(QR-RLS)算法与正交三角分解——盲递推最小二乘(QR-BRLS)算法的配合使用,并给出实现QR-RLS算法和QR-BRLS算法的脉动阵列(systolic array)。理论分析和仿真结果均表明QR-RLS与QR-BRLS算法的合理配合能较好的解决动态环境下的干扰抑制问题。In order to solve the problem of the dynamic interference suppression for spread spectrum systems, the recursive least squares(RLS)adaptive versions of the minimum mean square error (MMSE) criterion, and the blind recursive least squares (BRLS) adaptive versions of the constrained minimum mean output energy (MMOE) criterion were analyzed. The QR decomposition could overcome three major problems associated with the two adaptive algorithms, that is, numerical instability, computational complexity and difficult for parallel implementation. Then, the matters in the transition from the QR decomposition-based BRLS (QR-BRLS) to the QR decomposition-based RLS (QR-RLS) and vice versa were discussed. The systolic arrays for parallel implementation of the QR-RLS and the QR-BRLS adaptive interference suppression algorithms were also proposed. The theoretic analyses and the emulator results all indicate that the cooperation of the two algorithms can preferably resolve the dynamic interference suppression.
关 键 词:扩频 干扰抑制 最小均方误差准则 盲递推最小二乘算法 脉动阵列
分 类 号:TN911[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7