检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学通信技术研究所,黑龙江哈尔滨150001
出 处:《南京理工大学学报》2005年第2期197-201,共5页Journal of Nanjing University of Science and Technology
摘 要:为了对抗多址干扰和远近效应,研究将RBF(经向基函数,RadialBasisFunction)神经网络中的递归正交最小二乘(ROLS -AWS)算法应用于多用户检测中。给出在同步高斯信道条件下运用三层神经网络解调扩频信号的原理框图,分析了基于RBF网络的多用户检测接收机。为了改进RBF网络的运算速度,在基于RBF网络的多用户检测接收机中采用ROLS -AWS算法。计算机仿真结果表明:使用所提算法的RBF网络接收机的抗多址干扰、远近效应以及训练速度的性能上都明显优于传统接收机。In order to suppress the multiple access interference (MAI) and resist near-far effect, the recursive orthogonal least square with auto weight selection(ROLS-AWS) algorithm used in radial basis function(RBF) neural network is introduced to the multiuser detection(MUD).The paper first introduces RBF into MUD. Then the three-layer neural network demodulation spread-spectrum signal model in synchronous Gauss channel was given. The multi-user detection receiver was analyzed. In order to improve the computational speed, the ROLS-AWS algorithm was used in the RBF-based MUD receiver. The simulated results show that the proposed RBF-based MUD receiver using ROLS-AWS algorithm is better than the conventional detector, the common BP and the RBF neural network which does not use ROLS-AWS based MUD receiver on suppressing multiple access interference,near-far effect and training speed.
关 键 词:多用户检测 多扯干扰 RBF神经网 ROLS-AWS算法
分 类 号:TN929.533[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.211.215