RBF神经网络多用户检测ROLS-AWS算法的研究  被引量:3

ROLS-AWS Algorithm Used in RBF Neural Network Multiuser Detection

在线阅读下载全文

作  者:王永建[1] 周廷显[1] 

机构地区:[1]哈尔滨工业大学通信技术研究所,黑龙江哈尔滨150001

出  处:《南京理工大学学报》2005年第2期197-201,共5页Journal of Nanjing University of Science and Technology

摘  要:为了对抗多址干扰和远近效应,研究将RBF(经向基函数,RadialBasisFunction)神经网络中的递归正交最小二乘(ROLS -AWS)算法应用于多用户检测中。给出在同步高斯信道条件下运用三层神经网络解调扩频信号的原理框图,分析了基于RBF网络的多用户检测接收机。为了改进RBF网络的运算速度,在基于RBF网络的多用户检测接收机中采用ROLS -AWS算法。计算机仿真结果表明:使用所提算法的RBF网络接收机的抗多址干扰、远近效应以及训练速度的性能上都明显优于传统接收机。In order to suppress the multiple access interference (MAI) and resist near-far effect, the recursive orthogonal least square with auto weight selection(ROLS-AWS) algorithm used in radial basis function(RBF) neural network is introduced to the multiuser detection(MUD).The paper first introduces RBF into MUD. Then the three-layer neural network demodulation spread-spectrum signal model in synchronous Gauss channel was given. The multi-user detection receiver was analyzed. In order to improve the computational speed, the ROLS-AWS algorithm was used in the RBF-based MUD receiver. The simulated results show that the proposed RBF-based MUD receiver using ROLS-AWS algorithm is better than the conventional detector, the common BP and the RBF neural network which does not use ROLS-AWS based MUD receiver on suppressing multiple access interference,near-far effect and training speed.

关 键 词:多用户检测 多扯干扰 RBF神经网 ROLS-AWS算法 

分 类 号:TN929.533[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象