机构地区:[1]InstituteofThermalEngineenng,TsinghuaUniversity,Beijing100084,P.R.China
出 处:《China Particuology》2005年第1期141-141,共1页
摘 要:Among the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along tAmong the technologies to control SO2 emission from coal-fired boilers, the dry flue gas desulphurization (FGD) method, with appropriate modifications, has been identified as a candidate for realizing high SO2 removal efficiency to meet both technical and economic requirements, and for making the best quality byproduct gypsum as a useful additive for improving alkali soil. Among the possible modifications two major factors have been selected for study: (1) favorable chemical reaction kinetics at elevated temperatures and the sorbent characteristics; (2) enhanced diffusion of SO2 to the surface and within the pores of sorbent particles that are closely related to gas-solid two-phase flow patterns caused by flue gas and sorbent particles in the reactor. To achieve an ideal pore structure, a sorbent was prepared through hydration reaction by mixing lime and fly ash collected from bag house of power plants to form a slurry, which was first dewatered and then dried. The dry sorbent was found capable of rapid conversion of 70% of its calcium content at 700℃, reaching a desulphurization efficiency of over 90% at a Ca/S ratio of 1.3. Experiments confirmed that the diffusion effect of SO2 is an important factor and that gas-solid two-phase flow plays a key role to mixing and contact between SO2 and sorbent particles. For designing the FDG reactor, a new theoretical drag model was developed by combination of CFD with the Energy Minimization Multi-Scale (EMMS) theory for dense fluidi-zation systems. This new drag model was first verified by comparing calculated and measured drag values, and was then implemented in simulation of gas-solid two-phase flow in two circulating fluidized beds with different sizes and flow parameters. One riser has diameter and height of 0.15 m×3m and another one 0.2m×14.2m. Their superficial gas velocities are 4 and 5.2 m·s-1, respectively, and the circulating rate 53 and 489 kg·(m-2·s-1). FCC particles were used in both cases. The results show that not only the static pressure drop along t
关 键 词:interaction between gas and particles flue gas desulphurization (FGD) diffusion of SO2 Energy Minimization Multi-Scale (EMMS) drag model
分 类 号:X701.3[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...