机构地区:[1]中国地质科学院矿产资源研究所,北京100037 [2]石家庄经济学院,河北石家庄050031
出 处:《矿床地质》2005年第2期108-121,共14页Mineral Deposits
基 金:国家基础研究规划 973项目 (2 0 0 2CB412 60 0 );国家自然科学杰出青年基金 (4 0 42 5 0 14 )联合资助
摘 要:西藏冈底斯斑岩铜钼成矿系统(13.6~16 .9Ma)发育在印_亚大陆后碰撞地壳伸展环境。成矿前斑岩成岩年龄≥17Ma ,以花岗闪长斑岩为主,成矿期斑岩形成于14 .5~17.6Ma之间,以二长花岗斑岩和石英二长斑岩为主,成矿后斑岩为花岗斑岩,其成岩年龄为11.2Ma。3期斑岩均为高钾钙碱性或钾玄岩系列,地球化学上类似于玄武质下地壳部分熔融产生的埃达克质岩。成矿前斑岩具有最低的ΣREE(2 7×10 -6~4 5×10 -6)、wY(2 .9×10 -6~3.4×10 -6)和wSm/wYb(3.0~4 .9) ,最高的wZr/wSm值(5 0~118) ;成矿后斑岩具有最高的ΣREE (12 2×10 -6~197×10 -6)和wY(8.2×10 -6) ,中等的wSm/wYb(5 .9~6 .2 )和wZr/wSm值(34~4 4 ) ;成矿期斑岩总体处于两者之间,其Sr_Nd同位素组成与CordilleraBlanca埃达克质花岗岩类似。研究提出,来自深部的软流圈物质或亏损地幔物质与下地壳物质交换,不仅导致冈底斯加厚、下地壳熔融,而且提供了巨量金属供应。部分熔融首先从下地壳底部开始,逐渐向上部迁移。下地壳石榴石角闪岩部分熔融过程中,残留相由角闪石向石榴石大规模转变导致角闪石的大量分解,释放出大量流体,是冈底斯斑岩含矿性的主导因素。The Gangdese porphyry Cu-Mo system in southern Tibet (13.6~16.9 Ma) was generated during the post-collision crustal extension. The pre-ore porphyries mainly consist of granodiorite porphyries with ages older than 17 Ma, whereas the porphyries of the ore-forming stage are mostly composed of monzonitic granite and adamellite porphyries with zircon SHRIMP ages ranging between 14.5 and 17.6 Ma. The post-ore porphyries are comprised of granite porphyries with a young Ar/Ar age of 11.2 Ma. Geochemical studies indicate that these porphyries are of shoshonitic and high-K calc-alkaline series, and show geochemical affinity with adakites derived from partial melting of a thickened basaltic lower crust. The pre-ore porphyries have the lowest contents of ΣREE (27×10 -6 ~45×10 -6 ), Y(2.9×10 -6 ~3.4×10 -6 ) and the lowest Sm/Yb ratio (3.0~4.9), coupled with the highest Zr/Sm ratio (50~118). The post-ore porphyries have the highest contents of ΣREE (122×10 -6 ~197×10 -6 ) and Y (8.2 ×10 -6 ), and intermediate ratios of Sm/Yb (5.9~6.2) and Zr/Sm (34~44). The porphyries of the ore-forming stage are transitional between the pre- and post-ore porphyries in terms of Y content and Sm/Yb and Zr/Sm ratios, but their Sr-Nd isotopic signature is similar to that of the adakitic rocks from Cordillera Blanca. Major, trace elements and Sr-Nd geochemistry of these adakitic porphyries indicates that partial melting of a thickened lower crust beneath southern Tibet involves input of materials derived from the depleted mantle, which provides necessary heat and metals (Cu, Au) for the generation of Cu-bearing adakitic melts. Upward migration of the melt zone from basal amphibole eclogite to upper garnet amphibolite proceeds gradually with time, but the transition of residual phase from amphibole-bearing to garnet-bearing assemblages in the garnet amphibolite source during melting is the fundamental and important process for the formation of the fertile adakite and porphyry Cu systems in southe
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...