检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学计算机科学与技术系,北京100084
出 处:《软件学报》2005年第5期733-743,共11页Journal of Software
基 金:国家自然科学基金;国家高技术研究发展计划(863)~~
摘 要:在诸如机器人足球赛等典型的可分解马尔可夫决策过程(factored Markov decision process,简称FMDP)模型中,不同状态属性在不同的状态下,对于状态评估的影响程度是不同的,其中存在若干关键状态属性,能够唯一或近似判断当前状态的好坏.为了解决FMDP模型中普遍存在的“维数灾”问题,在效用函数非线性的情况下,通过对状态特征向量的提取近似状态效用函数,同时根据对FMDP模型的认知程度,从线性规划和再励学习两种求解角度分别进行约束不等式组的化简和状态效用函数的高维移植,从而达到降低计算复杂度,加快联合策略生成速度的目的.以机器人足球赛任意球战术配合为背景进行实验来验证基于状态特征向量的再励学习算法的有效性和学习结果的可移植性.与传统再励学习算法相比,基于状态特征向量的再励学习算法能够极大地加快策略的学习速度.但更重要的是,还可以将学习到的状态效用函数方便地移植到更高维的FMDP模型中,从而直接计算出联合策略而不需要重新进行学习.In factored Markov decision process (FMDP) such as Robocup system, the effect to value evaluation of various states is different from each other within state attributes. There are some important state attributes that can determine the whole state value either uniquely, or at least, approximately. Instead of using the relevance among states to reduce the state space, this paper addresses the problem of curse of dimensionality in large FMDP by approximating state value function through feature vector extraction. A key contribution of this paper is that it reduces the computation complexity by constraints reduction in linear programming, speeds up the production of joint strategy by transplanting the value function to the more complex game in reinforcement learning. Experimental results are provided on Robocup free kick, demonstrating a promising indication of the efficiency of the approach and its’ ability of transplanting the learning result. Comparing this algorithm to an existing state-of-the-art approach indicates that it can not only improve the learning speed, but also can transplant state value function to the Robocup with more players instead of learning again.
关 键 词:群体Agent合作求解 可分解马尔可夫决策过程 线性规划 再励学习 维数灾
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229