检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《宇航学报》2005年第3期358-361,367,共5页Journal of Astronautics
基 金:国家自然科学基金(60274002);航天创新基金(021009)
摘 要:动能拦截器进入末制导阶段时经常需要进行大角度姿态机动,这时拦截器姿态控制系统具有非线性、强耦合、多输入多数出(MIMO)的特点。现针对动能拦截器模型的非线性和不确定性,提出PID神经网络自适应逆控制方法对拦截器飞行姿态进行控制。首先基于精确反馈线性化方法将系统解耦成三个独立的子系统,然后应用基于PID神经网络的自适应逆控制方法分别设计每个子系统的姿态控制器。该方法将PID神经网络控制与自适应逆控制相结合,对于拦截器姿态控制系统中的建模误差以及外部干扰具有较强的适应能力。仿真结果证明了该方法的有效性。When the kinetic interceptor enters into terminal guidance it has to maneuver with large angles. In this time the characteristic of interceptor attitude system is nonlinearity, strong-coupling and MIMO. A kind of adaptive inverse control approach using PID neural networks for the interceptor attitude uncertain system was proposed in this paper. Based on the exact feedback linearization technique, the system was firstly decoupled into three independent SISO subsystems, and then controllers for each subsystem were designed. The proposed adaptive inverse controllers integrated with PID neural networks make the system robust to the system unknown disturbance. Simulation results show the good performance and effectiveness of the proposed method.
关 键 词:动能拦截器 姿态控制 自适应逆控制 PID神经网络
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.45