检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]延边大学理工学院,吉林延吉133002 [2]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《计算机应用研究》2005年第7期45-47,共3页Application Research of Computers
基 金:国家自然科学基金资助项目(69362001)
摘 要:针对最佳平方逼近三层前馈神经网络模型,讨论了以逐一增加隐单元方式构建隐层时隐层性能的评测方法。分析了影响前馈神经网络性能的相关空间,引入了表示空间、误差空间、目标空间和耗损空间的概念,研究了每个隐单元的误差补偿性能,提出了网络隐层性能的评测参数,并通过对传统BP算法和正交化算法的考查验证了其合理性与有效性。A hidden layer performance evaluation method is dis cussed according to the model of least-squares approximation feedforward neural networks based on hidden layer gro wing strategy. Firstly, some spaces which affect the performance of feedforward neural networks are analyzed and four concepts of subspace, i.e. representation space, error space, target space and expend, are introduced. The error compensation performance of the hidden unit is analyzed. Finally, evaluation parameter of hidden layer performance is proposed, and the rationality and validity of proposed method are validated by reviewing classical BP algorithm and orthogona l algorithm.
关 键 词:三层前馈神经网络 隐层生长 误差补偿性能 隐层评测参数
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222