检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国航天科工集团公司六院,呼和浩特010000 [2]国防科技大学航天与材料工程学院,长沙410073
出 处:《固体火箭技术》2005年第2期116-119,共4页Journal of Solid Rocket Technology
摘 要:采用二维轴对称雷诺平均方程和SpalartAllmaras湍流模型,研究了被动式引射器稳定工作时其内流场结构及高空试验舱压强的变化。空间上采用二阶迎风格式进行耦合求解,时间上采用显式RungeKutta方法进行迭代推进,直至流场收敛。结果表明,引射马赫数越大,要求的启动总压越高,为了降低启动压比,可以适当缩小混合室收缩比,增加第二喉道长径比。引射马赫数与引射总压对引射器内流场结构和高空试验舱真空度影响极大,发动机出口燃气参数对高空试验舱真空度有一定的影响,但其作用十分有限。The inner flow field in the passive ejector and the pressure of experimental cabin during steady working condition were investigated by using two-dimensional axial symmetry average Reynolds equations and standard Spalart-Allmaras turbulent models. Two-order upstream scheme and explicit Runge-Kutta algorithm were used to solve these equations. The results show that bigger ejecting Mach number requires higher total start-up pressure. Reduction of the ratio of start-up pressure can be realized by decreasing the contraction ratio of the mixing chamber and increasing the L/D ratio of second throat appropriately. The ejecting Mach number and total pressure have great effects on the structure of the inner flow field in ejector and the vacuum degree of experimental cabin. The gas parameters of nozzle exit have certain effects on the vacuum degree of experimental cabin, but the effects are limited.
关 键 词:被动引射 超音速引射器 内流场 数值模拟 湍流模型 火箭发动机
分 类 号:V430[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7