检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学工程力学系,陕西西安710072
出 处:《西北工业大学学报》2005年第3期401-405,共5页Journal of Northwestern Polytechnical University
基 金:西北工业大学科技创新基金(2004M450213)资助
摘 要:研究在地球扁率影响和航天器在小推力推进作用下,任意椭圆轨道最优转移的一种解析解法。将小推力和地球扁率影响视为摄动力,建立航天器转移的状态方程,应用Pontryagin极大值原理,得到航天器最优推力加速度控制方程。在假设简化时,将无量纲的推力加速度γ和地球扁率的二阶带谐系数J20视为同一阶量级,并只考虑它们的一次项,忽略其他的高次项,从状态方程中分解出小推力和地球扁率对轨道根数的影响,并分别进行了积分,得出最优转移轨道的一阶解析解。An analytic solution is determined for optimum low-thrust power transfer between neighboring elliptic orbits considering the earth oblateness. The optimization problem is formulated as a Lagrange problem of optimal control with six elements of an elliptic orbit as state variables. For simplifying the problem, the coefficients for the second zonal harmonic J2 and the nondimensional thrust acceleration are supposed to be of the same order of magnitude. After applying optimal control theory and the Pontryagin maximum principle, the integrate equation are divided into three parts: the undisturbed part, the part due to thrust acceleration and the part due to the second zonal harmonic. The previous two parts are integrated with eccentric anomaly as independent variables; the first-order analytical solution of the last part can be obtained by mean element method. The solution equations are linear in both the changes on the six orbital elements and the corresponding adjoint variables. Finally a series of typical examples are given to show that the solution in this paper is accurate enough for magnitude of A between 10-3-10-5.
分 类 号:V412[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.115