Conditional moment closure modeling of a lifted turbulent flame  被引量:4

Conditional moment closure modeling of a lifted turbulent flame

在线阅读下载全文

作  者:JIANGYong QIURong ZHOUWei FANWeicheng 

机构地区:[1]StateKeyLaboratoryofFireScience,UniversityofScienceandTechnologyofChina,Hefei230026,China

出  处:《Chinese Science Bulletin》2005年第12期1261-1269,共9页

基  金:supported by the National Natural Science Foundation of China(Grant Nos.50276057 and 50476027);the China NKBRSF Project(No.2001 CB409600)..

摘  要:Results obtained using conditional moment closure (CMC) approach to modeling a lifted turbulent hy-drogen flame are presented. Predictions are based on k-ε-g turbulent closure, a 23-step chemical mechanism and a ra-dially averaged CMC model. The objectives are to find out how radially averaged CMC can represent a lifted flame and which mechanism of flame stabilization can be described by this modeling method. As a first stage of the study of multi-dimensional CMC for large eddy simulation (LES) of the lifted turbulent flames, the effect of turbulence upon combustion is included, the high-order compact finite- difference scheme (Padé) is used and previously developed characteristic-wave-based boundary conditions for multi- component perfect gas mixtures are here extended to their conditional forms but the heat release due to combustion is not part of the turbulent calculations. Attention is focused to the lift-off region of the flame which is commonly considered as a cold flow. Comparison with published experimental data and the computational results shows that the lift-off height can be accurately determined, and Favre averaged radial profiles of temperature and species mole fractions are also reasonably well predicted. Some of the current flame stabili-zation mechanisms are discussed.Results obtained using conditional moment closure (CMC) approach to modeling a lifted turbulent hy-drogen flame are presented. Predictions are based on k-ε-g turbulent closure, a 23-step chemical mechanism and a ra-dially averaged CMC model. The objectives are to find out how radially averaged CMC can represent a lifted flame and which mechanism of flame stabilization can be described by this modeling method. As a first stage of the study of multi-dimensional CMC for large eddy simulation (LES) of the lifted turbulent flames, the effect of turbulence upon combustion is included, the high-order compact finite- difference scheme (Padé) is used and previously developed characteristic-wave-based boundary conditions for multi- component perfect gas mixtures are here extended to their conditional forms but the heat release due to combustion is not part of the turbulent calculations. Attention is focused to the lift-off region of the flame which is commonly considered as a cold flow. Comparison with published experimental data and the computational results shows that the lift-off height can be accurately determined, and Favre averaged radial profiles of temperature and species mole fractions are also reasonably well predicted. Some of the current flame stabili-zation mechanisms are discussed.

关 键 词:条件反应 瞬间关闭 CMC模型 氢火焰 稳定性 

分 类 号:O643.2[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象