检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京科技大学冶金与生态工程学院,北京100083
出 处:《特殊钢》2005年第4期33-35,共3页Special Steel
摘 要:采用多元线性回归方法分析了在给定结晶器电磁搅拌条件下(230~245A),碳含量0.58%~0.83%,二冷比水量0.82~2.86L/kg,拉速1.90~3.0m/min,过热度17~60℃范围内,各参数对140mm×140mm和150mm×150mm小方坯中心碳偏析的影响,并采用BP神经网络进行预测计算。多元回归分析结果表明,影响中心碳偏析的显著因素是钢中碳含量,其次是连铸拉速和二冷比水量;随钢中碳含量、拉速和过热度增加,铸坯中心碳偏析增大,随二冷比水量增加,中心碳偏析减小。The each technology parameters in range of carbon 0.58%~0.83%, water ratio in secondary cooling zone 0.82~2.86 L/kg, casting speed 1.9~3.0 m/min and superheating of liquid steel 17~60 ℃ on center carbon segregation of 140 mm×140 mm and 150 mm×150 mm billet has been analyzed at given mould electromagnetic stirring (230~245 A) using multivariate linear regression analysis, and the predicted calculation was carried out using Back Propagation (BP) neural networks. The results by multivariate regression analysis showed that the carbon content in steel was remarkable factor to influence the center carbon segregation, next were casting speed and water; and with carbon content in steel, casting speed and superheating of liquid steel increasing, the center carbon segregation in billet increased and with water ratio in secondary cooling zone increasing, the center carbon segregation decreased.
关 键 词:中心碳偏析 小方坯 工艺参数 连铸 高碳钢 多元线性回归方法 BP神经网络 比水量 搅拌条件 预测计算 分析结果 多元回归 过热度 碳含量 结晶器 二冷 min 拉速 铸坯
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229