肠道病毒71型感染前后宿主细胞蛋白质组的二维液相色谱分离和比较  被引量:5

A Comparison of Pre- and Post-infected Host Cell by Enterovirus 71 Using a 2-D Liquid Separation Mapping Method Based upon Chromatographic Fractionation

在线阅读下载全文

作  者:朱俊萍[1] 孙立连[1] 卫灿东[1] 李琳琳[1] 金奇[1] 

机构地区:[1]病毒基因工程国家重点实验室,北京100052

出  处:《病毒学报》2005年第4期248-252,共5页Chinese Journal of Virology

基  金:国家863高技术研究发展计划(2004AA215220)

摘  要:以肠道病毒71型及其宿主细胞为研究主体,建立了一种二维液相色谱分离和分析比较病毒感染前后细胞蛋白表达谱的方法.该方法以高效液相色谱(HPLC)为技术平台,对细胞裂解物先后进行一维色谱聚焦分离和二维反相色谱分离.利用ProteoVue软件将二维色谱数据转换成模拟胶图,再利用DeltaVue软件对感染前后的宿主蛋白表达谱进行比较和分析,找出差异蛋白.二维液相色谱分离法能够根据蛋白的等电点和疏水性建立精确的细胞蛋白表达图谱,每0.2个pH为一个收集区段,在pH8.5~3.9的范围内可见蛋白条带约1 200条.该方法良好的重现性、自动化以及结果分析的简易化,使之在细胞表达谱差异显示中的应用潜力巨大,并且为研究病毒与宿主相互作用提供了新的方法和思路.A 2-D Liquid-phase Separation Method has been developed for differential display of proteins from cell lysates and applied to a comparison of protein expression between pre- and post-infected host cells by enterovirus 71. The method involves fractionation according to pI using chromatofocusing in the first dimension, followed by separation of the proteins in each pI fraction using nonporous reversed phase HPLC in the second dimension. A 2-D map of the protein content of Vero cell line based upon pI versus hydrophobicity as detected by UV absorption was generated and a differential display map displayed using ProteoVue and DeltaVue software. Using this method, about 1 200 protein bands could be detected in 0.2 pH fractions over a pH range of 8.53.9. The method has been shown to have high reproducibility for differential display analysis of interlysate comparisons, generation of accurate protein identifications and ease of data interpretation. The relative simplicity of the current procedure and the potential for full automation will make this technique an essential tool for virus and host interaction studies in the future.

关 键 词:蛋白质组 二维液相色谱分离 肠道病毒71型 宿主细胞 

分 类 号:R373.2[医药卫生—病原生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象