检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄晓春[1] 晏蒲柳[1] 夏德麟[1] 陈健[1]
出 处:《计算机应用》2005年第8期1821-1823,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(90204008)
摘 要:由于文本文档数量多、词量大,形成的文档空间维度高,很多自动文本分类算法不能直接有效地发挥作用。基于差异—相似矩阵(DSM)的方法在很大程度上降低了文档空间的维度。已经分好类的文集经过预处理后被表示成特征项—文档矩阵,再转化为差异—相似矩阵,其中同类文档采用相似项描述,而异类文档则采用差异项描述。通过对差异—相似矩阵的处理,最终得到维度较低的文本特征集,并同时生成分类规则。实验说明,对于大规模文集,DSM方法能在保持良好的分类质量的同时,获得较高的属性降维率和样本降维率。Due to the huge amount of text documents and their vocabulary, document spaces are commonly of high dimensionality, and many automatical text categorization algorithms can not get their best performences directly. Difference-similitude Matrix-based (DSM) method reduces dimensionality to a great extend. Pre-classified collection is represented as a item-document matrix after preprocessing, then transmitted into a DSM, in which documents in the same classes are depicted with similitude while documents in different classes with difference. The method generates an item set of low dimensionality and a set of classification rules after dealing with the DSM. Results of experiments suggest that DSM-based method could achieve high attribute reduction degree and sample reduction degree with good classification quality.
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.146.8