检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]云南工学院
出 处:《工程力学》1995年第1期97-103,共7页Engineering Mechanics
基 金:云南省教委科研基金
摘 要:本文应用椭园型偏微分方程中的位势理论,把定义弹性半空间内任一点由表面分布压力所产生沉陷值的Boussinesq积分,分别考虑为单层和双层位势之和。利用在超过边界时,单层位势有弱间断及双层位势有强间断的性质,得到用偏导数表达的Boussinesq积分的逆变换公式,从而便于求出问题的解析解。它是将刚性压头产生的沉陷与扁壳弹性弯曲产生的沉陷相迭加而得到弹性半空间内及其表面任一点的总沉陷值。数值算例证明本文的理论计算结果可信。in this paper, the potential theory for partial differential equations of elliptic type is applied to define the Boussinesq integrals, which express the vertical settlement at any point in the elastic half space, as the combination of two integrals, one corresponding to a single layer potential and the other a double layer potential, with kernels being expressed in terms of the contacting pressure intensity. The single layer potential has weak discontinuity. and the double layer potential has strong discontinuity as they go through the boundary surface. Using these discontinuity phenomena, we get the inverse transformation formulae either taking the shallow shell as a rigid body or as an elastic thin shallow shell. This enables us in a very easy way to get the analytical solutions of the problem. One example is given to illustrate our approach to obtain the analytical solutions. Numerical result are presented to show the rationality of the solution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249