检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,成都610031 [2]电子对抗国防科技重点实验室,成都610036
出 处:《西安交通大学学报》2005年第8期871-875,共5页Journal of Xi'an Jiaotong University
基 金:国防科技重点实验室预研基金资助项目(NEWL51435QT220401);国家自然科学基金资助项目(60474022).
摘 要:将粗集理论(RST)引入到雷达辐射源信号(RES)识别中,提出一种区间连续属性离散化新方法及相应的特征选择算法,将RST与神经网络(NN)结合,设计粗集神经网络(RNN)分类器.实验结果表明,该方法解决了已有方法难以处理的区间连续属性离散化问题,获得的正确识别率比其他3种方法分别高出7.29%、4.34%和4.00%.RNN的平均训练代数比NN少97.54,RNN的平均识别率比NN高2.84%,这表明RNN具有比NN更好的分类能力和泛化能力,从而证实了该方法的有效性和可行性.Rough set theory (RST) was introduced into radar emitter signal recognition. A novel approach was proposed to discretize interval-valued continuous attributes, and the corresponding feature selection method was presented. Rough set neural network (RNN) classifier was designed by combining RST and neural network (NN). Experimental results show that the proposed approach solves the problem of interval-valued continuous attribute discretization existing methods are unable to deal with, and achieves higher 7.29%, 4.34% and 4. 00% recognition rate than that of the other methods. The average training generations of RNN are 97.54 less than that of NN and the average recognition rate of RNN is higher 2.84% than that of NN, which indicates that RNN has stronger capabilities of classification and generalization than NN to be expectantly applied to the practice.
分 类 号:TN957[电子电信—信号与信息处理] TP18[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117