基于图像极小相似度的填充曲线半色调方法  

DIGITAL HALFTONING METHOD BASED ON MINIMAL SIMILARITY DEGREE SPACE FILLING CURVES

在线阅读下载全文

作  者:任小玲[1] 许世军[2] 

机构地区:[1]西安工程科技学院计算机学院,陕西西安710048 [2]西安工业学院数理系,陕西西安710032

出  处:《计算机应用与软件》2005年第8期95-97,共3页Computer Applications and Software

基  金:陕西省教育厅专项科研基金项目(99JK196)资助。

摘  要:扫描路径是数字半色调技术的关键环节。针对行扫描误差扩散方法、HilbertPeano曲线半色调方法的不足,提出了基于图像极小相似度的填充曲线半色调方法。该方法首先定义了一个与待处理图像像素个数相等的非连通带权图及其相关的一个连通带权图;其次求出后者的最小生成树;再次根据最小生成树将非连通的原图连接成连通图,该连通图即为图像的极小相似度曲线;最后从该曲线的任意一点出发,沿此曲线深度优先处理图像的每一个像素。实验表明,用新的扫描路径处理后得到的半色调图像的整体效果较好;图像不存在与扫描路径相关的规律性纹理;图像边缘更加平滑,其边缘对比度指标比现有方法优一个数量级;图像的非边缘区域误差最小。Scanning path is the key of digital halftoning technology. For the defects of some digital halftoning methods based on HilbertPeano space filling curves and line scanning error diffusion, a new digital halftoning technique based on error diffusion along a MSDC ( Minimal Similarity Degree Curves)is proposed. In the new method, First, a rectangular weight non-connected grid graph over the image is defined, as well as a correlative weight connected grid graph. Second, a minimum-weight spanning tree of the latter graph is computed. Third, based on the minimum-weight spanning tree,the rectangular weight non-connected grid graph is constructed a weight connected grid graph,and the weight connected grid graph is MSDC. Finally,the weight connected grids graph is processed by depth first search. Lots of comparative experiments had improved that whole quality of resulting digital image with new method is better than other methods( Hilbert-Peano space filling curves and line scanning curves) ,that resulting digital image with new method is free from regular patterns, that edge of resulting digital image is smoother than other methods,which its edge contrast degree is superior one power level to others,that non-edge error of image is the least in the three methods.

关 键 词:计算机 图像处理 图像极小相似度 填充曲线半色调方法 数字半色调技术 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象