基于扩展Infomax ICA的ERP少次提取方法研究  被引量:2

Study on the Several Trials Extraction of ERP Based on Extended-Infomax ICA

在线阅读下载全文

作  者:万柏坤[1] 杨建刚[1] 綦宏志[1] 刘庆凯[1] 赵丽[1] 

机构地区:[1]天津大学精仪学院生物医学工程与科学仪器系,天津300072

出  处:《北京生物医学工程》2005年第4期241-245,共5页Beijing Biomedical Engineering

基  金:国家自然科学基金项目 (60 4710 2 8);天津市自然科学基金项目 (993 60 75 1);天津市重点学科建设基金 (2 0 0 0-3 1)资助

摘  要:事件相关电位(eventrelatedpotential,ERP)提取是脑电研究的重点之一,目前临床上主要通过相干平均的方法来获取。由于脑电的非平稳性,使其需要大量重复刺激才能获得,对于受试者极不方便,也不利于ERP的实时检测。本文以反映大脑稀少认知事件的相关电位P30 0为例,采用扩展Infomax (extendedinformation maximization)独立分量分析(independentcomponentanalysis,ICA)算法,先滤除眼动、工频干扰,再重构脑电数据,最后经少次叠加即可得到与通常需多次相干平均结果相近的比较满意的P30 0波形。说明ICA算法在ERP的峰值和潜伏期模式识别上具有较为明显的效果,具有潜在的临床工程应用价值。The extraction of Event Related Potential (ERP) is one of important points of EEG research. And it is obtained by the method of coherent averaging at the present clinical study. But this way is extremely inconvenient to the test receivers because the EEG signal is nonstationary so that it needs the same stimulations at least over hundred times, furthermore, it has difficulty for the estimation of ERP on time. This paper lists the examples of P300 that reflects the related potential of the brain' s recognizing rare events. A method based on the extended infomax of independent component analysis (ICA) is proposed for seldom trials extraction of ERP. In this algorithm, firstly the interferences such as blink artifacts and power noise are removed, then the EEG data is rebuilt finally the several trails are added in order to get a rather satisfied P300 wave patter which is similar to that obtained by the conventional coherent averaging needed over 36 times. It illustrates that the ICA algorithm has an obvious effect on the pattern recognition of ERP peaks & latencies, and is valuable for application in clinical engineering.

关 键 词:脑电(EEG) 扩展Informax事件相关电位 独立分量分析少次提取 峰值 

分 类 号:R318.0[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象