关于图的余树的奇连通分支数的内插定理  被引量:2

AN INTERPOLATION THEOREM ON THE NUMBER OF ODD COMPONENTS OF CO-TREES

在线阅读下载全文

作  者:任韩[1] 吕长青[1] 马登举[1] 卢俊杰[1] 

机构地区:[1]华东师范大学数学系,上海200062

出  处:《应用数学学报》2005年第3期546-550,共5页Acta Mathematicae Applicatae Sinica

基  金:国家自然科学基金(10271048号)资助项目;上海市重点学科基金;上海市科委重点学科基金项目资助(批准号:04JC14031)

摘  要:本文研究了连通图的余树的奇连通分支数与其可定向嵌入的关系.我们先给出了关于连通图的余树的奇连通分支数的内插定理.作为其应用,我们推广了Xuong和刘彦佩关于图的最大亏格的计算公式,并且证明了如下结果:任意一个连通图G一定满足下列条件之一: (a)对于任意的满足γ(G)≤g≤γM(G)整数g,只要图G嵌入到可定向曲面Sg上,就存在支撑树T,使g-1/2β(G)-ω(T)),其中,γ(G)与γM(G)分别是图G的最小和最大亏格,β(G)与ω(T)分别是图G的Betti数和由T确定的余树的奇连通分支数; (b)对连通图G的任意一个支撑树T,G可以嵌入某个可定向曲面上使其恰好有ω(T)+1个面.特别地,我们给出了所有非平面的3-正则的Hamilton图G所嵌入的可定向曲面的亏格的计算公式.This paper investigates the relation between the number of odd components of co-trees in a connected graph G and its orientable embeddings. Firstly, it gives an interpolation theorem on the number of odd components of co-trees in a connected graph.Secondly, it proves that for any connected graph G, it must satisfy one of the following two conditions: (a) for every integer g with γ(G)≤g≤γM(G),there exists a spanning tree T of G with ω(T) odd components such that g=1/2(β(G)-ω(T)), where γ(G) and γM(G) are, respectively, the minimum and maximum genus of G, and β(G) and ω(T)are, respectively, the Betti number of G and the number of odd components of co-trees determined by T; (b) for every spanning tree T with ω(T) odd components, G may be embedded into some orientable surface such that there are exactly ω(T) + 1 faces. This extends a famous result for maximum genus of Xuong and Liu.As an application,the paper provides a formula to calculate the genus g of an orientable surfaces S(g) into which a nonplanar 3-regular Hamiltonian graph may be embedded.

关 键 词:图的余树的奇连通分支数 图的亏格 

分 类 号:O157.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象