检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学电力系统保护与动态安全监控教育部重点实验室,河北省保定市071003
出 处:《中国电机工程学报》2005年第15期56-61,共6页Proceedings of the CSEE
摘 要:针对基于人工神经网络的暂态稳定评估数据预处理中的数据离散化进行了深入的研究,提出了一种基于信息熵和粗糙集理论的输入特征离散化新方法:通过对样本空间的聚类分析筛选出各条件属性在离散化过程中的可用断点;利用信息熵的相关概念,构建各条件属性的候选断点集;采用粗糙集理论中决策表不相容度的概念,检测出各条件属性间的最优断点组合。算例表明:该方法在保证暂态稳定评估精度的前提下,能有效地压缩训练样本集,减轻神经网络的训练负担,为基于神经网络的大系统暂态稳定评估提供了新思路。As the kernel of data pretreatment, discretization of continuous attributes is investigated for transient stability assessment based on artificial neural networks. A new discretization scheme combined entropy with rough sets theory is proposed. The possible cut points for each conditional attribute are found out through clustering analysis of the input space. The initial cut point sets for each conditional attribute based on the entropy are established. The optimal combinations of initial cut point sets for different conditional attributes can be obtained through checking incompatibility degree of decision table based on rough sets theory. The simulation results indicate that the proposed scheme can compress the training sample set and reduce the training burden of artificial neural networks effectively. A new methodology is given for neural- network-based transient stability assessment of large-scale power systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222