SMALL-STENCIL PAD SCHEMES TO SOLVE NONLINEAR EVOLUTION EQUATIONS  被引量:2

SMALL-STENCIL PAD SCHEMES TO SOLVE NONLINEAR EVOLUTION EQUATIONS

在线阅读下载全文

作  者:刘儒勋 吴玲玲 

机构地区:[1]Department of Mathematics, University of Science and Technology of China, Hefei 230026, P.R.China

出  处:《Applied Mathematics and Mechanics(English Edition)》2005年第7期872-881,共10页应用数学和力学(英文版)

基  金:ProjectsupportedbytheNationalNaturalScienceFoundationofChina(Nos.10371118and90411009);theScienceFoundationofStateKeyLaboratoryofFireScience(SKLFS)andtheScienceFoundationofBeijingComputationalPhysicsLaboratory

摘  要:A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.

关 键 词:evolution equation compact scheme Pade scheme node stencil SOLITON 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象