检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡克[1]
机构地区:[1]江西师大数学系,南昌330027
出 处:《江西师范大学学报(自然科学版)》1995年第1期23-26,共4页Journal of Jiangxi Normal University(Natural Science Edition)
基 金:国家和江西省自然科学基金资助项目
摘 要:设:f(x)∈AC[o,A),并f(0)=f(h)=0.则有integral from n=0 to h(|f(x)f(x)|dx)≤h/4 integral from n=0 to h(|f'(x)|~2dx)这个不等式叫做Opial不等式.许多数学家对它曾进行过研究.在此我们给予有意义的改进:integral from n=0 to h (|ff'|dx)≤1/2(h/2)^(2/Q)(integral from n=0 to h(|f'|~pdx))^((2/p)-(2/Q)){(integral from n=0 to h(|f'|~pdx))~2-1/4(integral from n=0 to h(|f'|~pcos(2πx/h)dx)~2)}((?)/Q)其中I<P≤2,Q=p/(P—1).(2)显然比(1)优秀,实际上我们已证得更一般的结果.:The main result of this paper is:Theorem: Let f(x) be absolutely continuous on [0,h]with f(0) =f(h) =0. Then we haveWhere 1<P≤2,Q=P/(P-1).This is an improvement of Beesack inequality. The P= 2 is an improvement of Opial inequality.In fact,we have proved more generally inequality than (1) in this paper.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117